我们旨在通过引入全面的分布式深度学习(DDL)探索器来解决此问题,该研究人员可以确定DDL在公共云上运行时遭受的各种执行“失速”。我们已经通过扩展先前的工作来估算两种类型的通信失速 - 互连和网络摊位来实现剖面。我们使用Profiler培训流行的DNN模型来表征各种AWS GPU实例,并列出了用户做出明智决定的优势和缺点。我们观察到,较昂贵的GPU实例可能不是所有DNN型号的性能最多,并且AWS可能会在次优的硬件互连资源分配次优。具体而言,与单个实例的培训相比,机内互连可以引入高达90%的DNN培训时间和网络连接的实例的通信开销,而与网络连接的实例可能会遭受高达5倍的速度。此外,我们对DNN宏观特征的影响进行建模,例如层的数量和通信摊位上的梯度数量。最后,我们为用户提出了一个基于衡量的建议模型,以降低DDL的公共云货币成本。
translated by 谷歌翻译
尽管图表神经网络(GNNS)的最近成功,但大图上的培训GNN仍然具有挑战性。现有服务器的有限资源容量,图中节点之间的依赖关系以及由于集中存储和模型学习导致的隐私问题刺激了用于GNN训练的有效分布式算法的需要。然而,现有的分布式GNN训练方法强加过度的通信成本或妨碍其可扩展性的大存储器开销。为了克服这些问题,我们提出了一种名为$ \ text {{locally,正确的全球}} $(llcg)的通信有效的分布式GNN培训技术。为了减少通信和内存开销,LLCG中的每个本地计算机首先通过忽略不同机器之间的节点之间的依赖性在其本地数据上列出GNN,然后将本地训练的模型发送到服务器以获取周期性模型平均。但是,忽略节点依赖性可能导致显着的性能下降。要解决性能下降,我们建议在服务器上应用$ \ text {{{global server校正}} $以优化本地学习的模型。我们严格地分析了具有用于训练GNN的周期性模型的分布式方法的收敛性,并且显示了天真地应用周期模型平均但忽略节点之间的依赖性将受到不可缩小的残余错误。然而,通过利用所提出的全局校正来避免收敛速度,可以消除这种剩余误差。对现实世界数据集的广泛实验表明,LLCG可以显着提高效率而不会伤害性能。
translated by 谷歌翻译
PAC-Bayes has recently re-emerged as an effective theory with which one can derive principled learning algorithms with tight performance guarantees. However, applications of PAC-Bayes to bandit problems are relatively rare, which is a great misfortune. Many decision-making problems in healthcare, finance and natural sciences can be modelled as bandit problems. In many of these applications, principled algorithms with strong performance guarantees would be very much appreciated. This survey provides an overview of PAC-Bayes performance bounds for bandit problems and an experimental comparison of these bounds. Our experimental comparison has revealed that available PAC-Bayes upper bounds on the cumulative regret are loose, whereas available PAC-Bayes lower bounds on the expected reward can be surprisingly tight. We found that an offline contextual bandit algorithm that learns a policy by optimising a PAC-Bayes bound was able to learn randomised neural network polices with competitive expected reward and non-vacuous performance guarantees.
translated by 谷歌翻译
我们引入了一种新型技术和相关的高分辨率数据集,旨在精确评估基于无线信号的室内定位算法。该技术实现了基于增强的现实(AR)定位系统,该系统用于注释具有高精度位置数据的无线信号参数数据样本。我们在装饰有AR标记的区域中跟踪实用且低成本的可导航相机设置和蓝牙低能(BLE)信标的位置。我们通过使用冗余数字标记来最大程度地提高基于AR的本地化的性能。相机捕获的视频流经过一系列标记识别,子集选择和过滤操作,以产生高度精确的姿势估计。我们的结果表明,我们可以将AR定位系统的位置误差降低到0.05米以下的速率。然后,将位置数据用于注释BLE数据,这些数据由驻扎在环境中的传感器同时捕获,因此,构建具有接地真相的无线信号数据集,该数据集允许准确评估基于无线信号的本地化系统。
translated by 谷歌翻译
车辆到车辆(V2V)通信的性能在很大程度上取决于使用的调度方法。虽然集中式网络调度程序提供高V2V通信可靠性,但它们的操作通常仅限于具有完整的蜂窝网络覆盖范围的区域。相比之下,在细胞外覆盖区域中,使用了相对效率低下的分布式无线电资源管理。为了利用集中式方法的好处来增强V2V通信在缺乏蜂窝覆盖的道路上的可靠性,我们建议使用VRLS(车辆加固学习调度程序),这是一种集中的调度程序,该调度程序主动为覆盖外的V2V Communications主动分配资源,以前}车辆离开蜂窝网络覆盖范围。通过在模拟的车辆环境中进行培训,VRL可以学习一项适应环境变化的调度策略,从而消除了在复杂的现实生活环境中对有针对性(重新)培训的需求。我们评估了在不同的移动性,网络负载,无线通道和资源配置下VRL的性能。 VRL的表现优于最新的区域中最新分布式调度算法,而无需蜂窝网络覆盖,通过在高负载条件下将数据包错误率降低了一半,并在低负载方案中实现了接近最大的可靠性。
translated by 谷歌翻译
汤普森采样(TS)是在不确定性下进行决策的有效方法,其中从精心规定的分布中采样了动作,该分布根据观察到的数据进行更新。在这项工作中,我们研究了使用TS的可稳定线性季度调节剂(LQR)自适应控制的问题,其中系统动力学是未知的。先前的作品已经确定,$ \ tilde o(\ sqrt {t})$频繁的遗憾对于LQR的自适应控制是最佳的。但是,现有方法要么仅在限制性设置中起作用,需要先验已知的稳定控制器,要么使用计算上棘手的方法。我们提出了一种有效的TS算法,用于对LQR的自适应控制,TS基于TS的自适应控制,TSAC,该算法达到了$ \ tilde o(\ sqrt {t})$遗憾,即使对于多维系统和Lazaric(2018)。 TSAC不需要先验已知的稳定控制器,并通过在早期阶段有效探索环境来实现基础系统的快速稳定。我们的结果取决于开发新颖的下限TS提供乐观样本的概率。通过仔细规定早期的探索策略和政策更新规则,我们表明TS在适应性控制多维可稳定性LQR方面实现了最佳的遗憾。我们从经验上证明了TSAC在几个自适应控制任务中的性能和效率。
translated by 谷歌翻译
在测试时间进行优化的自适应防御能力有望改善对抗性鲁棒性。我们对这种自适应测试时间防御措施进行分类,解释其潜在的好处和缺点,并评估图像分类的最新自适应防御能力的代表性。不幸的是,经过我们仔细的案例研究评估时,没有任何显着改善静态防御。有些甚至削弱了基本静态模型,同时增加了推理计算。尽管这些结果令人失望,但我们仍然认为自适应测试时间防御措施是一项有希望的研究途径,因此,我们为他们的彻底评估提供了建议。我们扩展了Carlini等人的清单。(2019年)通过提供针对自适应防御的具体步骤。
translated by 谷歌翻译
最近的工作表明,当AI的预测不可靠时,可以学会推迟人类的选择性预测系统的潜在好处,特别是提高医疗保健等高赌注应用中AI系统的可靠性。然而,大多数事先工作假定当他们解决预测任务时,人类行为仍然保持不变,作为人类艾队团队的一部分而不是自己。我们表明,通过执行实验来规定在选择性预测的背景下量化人AI相互作用的实验并非如此。特别是,我们研究将不同类型信息传送给人类的影响,了解AI系统的决定推迟。使用现实世界的保护数据和选择性预测系统,可以在单独工作的人体或AI系统上提高预期准确性,我们表明,这种消息传递对人类判断的准确性产生了重大影响。我们的结果研究了消息传递策略的两个组成部分:1)人类是否被告知AI系统的预测和2)是否被告知选择性预测系统的决定推迟。通过操纵这些消息传递组件,我们表明,通过通知人类推迟的决定,可以显着提高人类的性能,但不透露对AI的预测。因此,我们表明,考虑在设计选择性预测系统时如何传送到人类的决定是至关重要的,并且必须使用循环框架仔细评估人类-AI团队的复合精度。
translated by 谷歌翻译
高斯过程状态空间模型通过在转换功能上放置高斯过程来以原则方式捕获复杂的时间依赖性。这些模型具有自然的解释,作为离散的随机微分方程,但困难的长期序列的推断是困难的。快速过渡需要紧密离散化,而慢速转换需要在长副图层上备份梯度。我们提出了一种由多个组件组成的新型高斯过程状态空间架构,每个组件都培训不同的分辨率,以对不同时间尺度进行模拟效果。组合模型允许在自适应刻度上进行时间进行时间,为具有复杂动态的任意长序列提供有效推断。我们在半合成数据和发动机建模任务上基准我们的新方法。在这两个实验中,我们的方法对其最先进的替代品仅比单一时间级运行的最先进的替代品。
translated by 谷歌翻译
分发班次的稳健性对于部署现实世界中的机器学习模型至关重要。尽管如此必要的,但在定义导致这些变化的潜在机制以及评估跨多个不同的分发班次的稳健性的潜在机制很少。为此,我们介绍了一种框架,可实现各种分布换档的细粒度分析。我们通过评估在合成和现实世界数据集中分为五个类别的19个不同的方法来提供对当前最先进的方法的整体分析。总的来说,我们训练超过85架模型。我们的实验框架可以很容易地扩展到包括新方法,班次和数据集。我们发现,与以前的工作〜\ citep {gulrajani20}不同,该进度已经通过标准的ERM基线进行;特别是,在许多情况下,预先训练和增强(学习或启发式)提供了大的收益。但是,最好的方法在不同的数据集和班次上不一致。
translated by 谷歌翻译